🔍How to Detect Google Title Tag Rewriting with SERP API

Reading time: 6 Minutes

Back in August 2021, Google started tweaking a few meta tags as long as search intent was met. Although this might occasionally hit the nail on the head, most of the time that contributes to warding off one’s webpage overall visibility.

Since the rewriting event, several powerful tools have been released in a bid to identify potential tweaks straight away. Even though you hardly would bite the hand that feeds you, the bespoke SEO featuring tools often conceal unfathomable fees which may in turn discourage users from accessing the features.

As you will notice, the script is designed to compare a fistful of page titles and meta descriptions to what is shown in the SERPs. This is achievable only through a Screaming Frog crawl and, of course, the SERP API.

Hence in case you needed to wriggle out the most expensive SEO tools on the market, you would find this framework at your fingertips.

Requirements & Assumptions

In order to detect SERP features tweaks, the Python script needs to be empowered by a few resources.

🛑 Beware the SERP API grants 100 free searches per month, therefore this framework might not be recommended if you are intended to work with large datasets.

Detect Google SERP Title and Snippet Rewriting

For the purpose of this task, we first need to install SERP API Python library called Google Search Results and Polyfuzz.

Do not forget to append an exclamation mark before the pip if you are using Google Colab

!pip install google-search-results!
!pip install polyfuzz

Polyfuzz is a pivotal library for this project as it is going to be employed to calculate the comparison similarity scores of each URL.

Once the libraries are installed, we need to import them onto our environment including Pandas. This step is equally crucial as it enables to create an empty data frame to ultimately fill up with the outcome of the title tags rewriting analysis.

import pandas as pd
from serpapi import GoogleSearch
from polyfuzz import PolyFuzz

Import the crawl CSV into a Pandas data frame

Import your list of URLs with either a CSV file or an internal_html Screaming Frog crawl, and make sure you only use a single column named “URL”.

Once uploaded the list, we are going to filter out rows that are not marked as “indexable”. Other than that, to make sure to run the comparisons between URLs we need to replace the NaN (no value) values with a string and

You will notice a comment hashmark at the end of the read_csv function but you can remove it or change it to the number of URLs you want to process.

Given that many meta descriptions are more characters than what is displayed in the SERP, what you want to aim for is capping the number of characters to 150 as it will deliver a better clue of the total rewriting.

df = pd.read_csv("YOUR_CSV_FILE")[["Address","Indexability","Title 1","Meta Description 1","H1-1"]] #[:5] 
df = df[df["Indexability"] == "Indexable"]
df = df.fillna('None') 
df.drop(['Indexability'], axis=1, inplace=True) 
df["Meta Description 1"] = df["Meta Description 1"].apply(lambda x: x[:150])

I suggest testing the script with a small subset of URLs to prevent your entire API credits from blowing up in one go.

Create Empty Lists to Store Data

At this point, we create 4 different empty data frames. The first two of them will contain the factual SERP title tag and meta description, whereas the others will pinpoint the feasible differences prompted by the search algorithms snippet rewriting.

serp_title_list = []
serp_desc_list = []
serp_title_list_diff = []
serp_desc_list_diff = []

Send each URL to the SERP API

Time to use the SERP API has finally tinkled the bell.

We need to loop through the crawled list of URLs to send each of them to the API, which will make a query the title and meta description snippet.

Make sure you set up the language (“hl”) and the location (“gl”) required for the desired output. Hence paste your SERP API key.

for index, row in df.iterrows():

  params = {
    "q": row["Address"],
    "hl": "en",
    "gl": "gb", 
    "api_key": "YOUR_API_KEY"

  search = GoogleSearch(params)
  results = search.get_dict()

  serp_title = results["organic_results"][0]["title"]
  serp_desc = results["organic_results"][0]["snippet"][:150]


Next, we are going to add the earned titles and meta snippets to our new data frame.

df["SERP Title"] = serp_title_list
df["SERP Meta"] = serp_desc_list

Calculate a Similarity Score with Polyfuzz

Here is where the magic happens.

Now that we have our data frame ready to be filled up with the findings, we need to finally scrape and parse the data.

Polyfuzz is going to help us calculating the accuracy level in which both the original title tags and meta descriptions match with their factual SERP counterpart.

🛑Please note that the scores range 0-1. The closest to 1, the better the match.

model = PolyFuzz("EditDistance")
model.match(serp_title_list, df["Title 1"].tolist())
df2 = model.get_matches()

model.match(serp_desc_list, df["Meta Description 1"].tolist())
df3 = model.get_matches()

model.match(serp_title_list, df["H1-1"].tolist())
df4 = model.get_matches()

Next, we need to import the retrieved similarity scores into a list. Needless to say, we are going to leverage the Pandas library.

df["SERP Title Accuracy Level"] = df2["Similarity"].tolist()
df["SERP Meta Accuracy Level"] = df3["Similarity"].tolist()
df["SERP H1 Accuracy Level"] = df4["Similarity"].tolist()

If we were to prompt the output at this stage, we would receive a ton of messy data. Due to that, we need to sort and format data.

To put that into context, we are going to sort by descending order the SERP title difference that has been detected. Ultimately we are going to round the similarity scores for Title, Meta and H1 accuracy.

df = df.sort_values(by='SERP Title Accuracy Level', ascending=True) 
df["SERP Title Accuracy Level"] = df["SERP Title Accuracy Level"].round(3) 
df["SERP Meta Accuracy Level"] = df["SERP Meta Accuracy Level"].round(3)
df["SERP H1 Accuracy Level"] = df["SERP H1 Accuracy Level"].round(3)

Finally, we can prompt the machine to return the output of the workload.


By default, you will be able to download the CSV file that we created along the process. However, if you wished the code retrieves an output for visualization only you can only type df by removing the comment hashmark.

Should you opt to download the CSV file, you will end up with something similar to the following screen grab.

Example of SERP Title Tags and Meta Descriptions Rewriting
SERP Title Tag and Meta Descriptions Rewriting


Taking advantage of data science often results in extremely beneficial to SEOs. Building your own tools concurs to speed up boring manual processes and help you save money that you could invest in your personal development.

Although this comes with a few downsides in the amount of data you can process, Python frameworks such as the Title Tag Rewriting with SERP API will come as the best of both worlds anytime you want to make sure Google does not rewrite your meta tags.

Further Readings

I must stress an honourable mention to Greg Bernhardt for inspiring me to conceive this post.

Please check out the original framework for further reference on the topic:

Detect Google SERP Title and Snippet Rewrites with Python

Never Miss a Beat

Subscribe now to receive weekly tips about Technical SEO and Data Science 🔥